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Figure 2.  New Madrid and Wabash Valley seismic zones, showing earthquakes as circles.  Red, 
earthquakes that occurred from 1976 to 2002 with magnitudes >2.5, located using modern 
instruments (University of Memphis).  Green, earthquakes that occurred prior to 1974.  
Larger circle represents larger earthquake.  Modified from Gomberg and Schweig (2002).
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SUMMARY

Loess (wind-deposited silt and clayey silt; Ql) is the predominant surficial deposit in the Memphis 
Southeast quadrangle.  Loess covers the upland to depths of 4.5–12 m.  In the floodplains of 
streams, alluvium (Qa) is 1–10 m thick; a few bog deposits (Qb) are present in the floodplain of 
Nonconnah Creek.  No evidence of prehistoric liquefaction (sand boils or sand dikes) or slumping was 
observed in the quadrangle.  Sparse, unconsolidated pebbly sand, 0.5–3 m thick, is present in 
narrow, linear point-bar and channel deposits of Nonconnah Creek.

DESCRIPTION OF MAP UNITS

Artificial fill (late Holocene)—Brown (7.5YR 5/4) silt to clayey silt.  Locally, unit 
contains minor amounts of chert pebbles and sand where excavations locally cut the 
underlying gravel (“Lafayette Gravel;” QTg).  Buildings or concrete and asphalt 
surfaces of roadbeds, airport runways, and other structures cover the artificial fill, 
which presumably is compacted to engineering specifications.  Railroad ballast is 
pebble-size, angular, crushed crystalline igneous rock and limestone; thickness 
estimated to be about 1 m.  At Memphis landfill site (1.6–3 km west of and 3 km 
southwest of Capleville, in southeastern part of quadrangle), unit consists of 
alternating layers of silt and refuse.  Shallow wells and casings penetrate the landfill, 
presumably to monitor fluid and gas content.  Thickness of artificial fill is estimated 
to be 0.5–2 m under paved surfaces (not exposed), 1–5 m under access ramps to 
roadways, and 5–15 m in landfill

Bog deposit (Holocene)—Black (10YR 2/1) silt and clayey silt that contains wood 
(branches and small tree trunks) and abundant roots, 0.5–20 cm in diameter.  
Exposure in Tenmile Creek cutbank shows friable, carbonaceous silt and clayey silt in 
apparently lenticular beds.  Contains fossil snails.  Underlies 1–2 m of crossbedded, 
light-brown, fine, sandy alluvium (Qa) that forms a floodplain surface in Tenmile 
Creek in central part of quadrangle.  Contours on topographic base map indicate 
that unit accumulated in one or more abandoned sinuous channels and on parts of 
surrounding floodplain of Nonconnah Creek.  Thickness 0.5–2 m

Creek alluvium (Holocene and late Pleistocene)—White (10YR 8/1) and very pale 
brown (10YR 8/4) silt; laminated and very thin bedded; contains lenses of very fine 
grained, and fine- to medium-grained quartz and chert sand.  Locally, silty deposit 
contains small amounts of admixed very fine sand.  Upper meter or two is silty and 
probably reworked by wind and surface sheetwash.  Unit is about 80 percent or 
more silt, washed from loess-mantled upland.  Unit includes minor, local silty fan 
alluvium and probable local, buried bog deposits like unit Qb.  Probable bog deposits 
are inferred from sinuous contour lines suggestive of former meandering channels on 
floodplain of Nonconnah Creek depicted on USGS 15-minute topographic maps 
dating to the early 1900’s.  In an excavation near the Mall of Memphis, Delcourt 
and others (1980) observed planar, interbedded clay, silt, and sand (location shown 
by a star symbol in east-central part of quadrangle, lat 35°04' N., long 89°54' W.).  
Location also yielded ankle, skull, teeth, and tusk fragments of the extinct American 
mastodon (Mammut americanum), fossil seeds, plants, wood, and beetle remains 
(Brister and others, 1981), which suggest a cool climate of the last continental glacial 
episode.  Delcourt and others (1980) obtained several carbon-14 isotope dates of 
23–17 ka on the fossil material.

This unit includes both alluvium in the modern channel and point bars of 
Nonconnah Creek, which is carried along the channel during modern high-discharge 
flows, and the late Pleistocene alluvium underlying the floodplain, from which it 
differs.  The modern alluvium is 0.5–3 m thick and consists of roughly equal 
amounts of sand and subangular chert pebbles.  The sand is chiefly medium grained, 
ranges from very fine to very coarse in grain size, and contains lenses of granules 
and pebbles.  In contrast, the late Pleistocene and Holocene floodplain alluvium is 
mostly silt that contains local buried channels of sand and lenses of pebbly sand.

The natural meandering channels of many streams in the quadrangle have been 
straightened by dredging (Simon and Hupp, 1992), and some (for example, sections 
of Tenmile Creek and Black Bayou) are straight, concrete-lined ditches and conduits.  
In places, channel walls of Nonconnah Creek are nearly vertical, 2–3 m high, and 
are flanked by narrow piles of spoil (not mapped) in many places.  Base of unit not 
exposed.  Thickness 1–10 m

Terrace deposit (late Pleistocene)—Brown (7.5YR 5/4) mostly silt, clayey silt, and silty 
very fine to fine quartz sand.  Unit is alluvium of Nonconnah Creek that is slightly 
older than unit Qa and that underlies a terrace, which is a small remnant of an older 
floodplain.  Thin, silty sheetwash alluvium, perhaps admixed with thin loess, mantles 
unit.  Deposit is compositionally similar to unit Qa.  Extensively excavated by man.  
A terrace origin is inferred from its relatively level surface and general altitude, 
standing about 2 m higher than the floodplain of Nonconnah Creek (Qa) and lower 
than loess-covered (Ql) hilly upland south of the creek.  Base of unit not exposed.  
Thickness estimated to be 1–2 m

Loess (late Pleistocene)—Brown (7.5YR 5/4) and light-brown (7.5YR 6/4) clayey silt.  
Calcareous, porous, and massive.  Undisturbed uppermost 0.2–0.5 m of unit is 
oxidized, dark-brown (7.5YR 4/4) clayey silt, which is plastic when wet and hard 
when dry.  This uppermost part locally contains vertical prismatic soil structures 3–5 
cm wide and 20–30 cm long; this zone may represent a partial or entire B horizon 
of a relict soil.  In many places, however, this soil has been removed or mixed with 
underlying material by earth-moving machinery.  Parks and Lounsbury (1975) 
reported the following grain-size data for loess in the Memphis area:  clay (<0.002 
mm) 20–25 percent; silt (0.06–0.002 mm) 70–75 percent; sand (2.0–0.06 mm) <5 
percent.  Hwang and others (2000) reported clay 19 percent, silt 76.3 percent, and 
sand 4.7 percent.  Bare slopes of loess erode readily to form small gullies spaced 
0.5–1 m apart.  Loess is cohesive and generally stands in 4- to 5-m-high vertical 
exposures, both manmade and natural.  In much of quadrangle, the south half 
especially, unit has been excavated to various depths for construction projects, 
landfill sites, and active and abandoned gravel pits.  Prior to this disturbance, loess 
uniformly mantled a stream-dissected upland surface formed on older alluvial sands, 
clayey sands, and pebbly sands of unit QTg.

Origin of the loess is tied to the midcontinental ice sheet.  In late Pleistocene 
time (pre-late Wisconsinan and late Wisconsinan glacial time), when the Laurentide 
ice sheet covered land north of the present Ohio and Missouri Rivers, voluminous 
glacial valley-train deposits washed down the Mississippi River alluvial valley.  From 
these unconsolidated sediments, prevailing winds picked up and carried silt mostly 
eastward, depositing it on uplands that include the Memphis area.  Rodbell and 
others (1997) suggested that loess deposition was episodic in the region, based on 
recognition of soil-separated loess units, named the Loveland Loess, Roxana Silt, 
and Peoria Loess from oldest to youngest.  Loess in this quadrangle is probably 
chiefly Peoria Loess.  We mapped one undifferentiated unit.  Thicknesses observed 
in excavations in quadrangle range from 4.5 to 5.5 m.  Drillers’ logs indicate 
thickness as much as 12 m

Gravel (“Lafayette Gravel” of Hilgard, 1892, early Pleistocene and 
Pliocene?)—Poorly exposed under loess (Ql) and alluvium (Qa).  The following 
description is of the ferruginous, weathered upper 1–2 m of the unit observed in 
manmade excavations and stream cutbanks.  Mottled, strong-brown (7.5YR 4/6), 
brown (7.5YR 5/4), and red (2.5YR 4/6), fine- to coarse-grained sand; chiefly chert 
and minor quartz pebbles and granules, subrounded to subangular.  Some chert 
pebbles contain minute biogenic skeletal debris (spines?, spicules, foraminifers).  
Gravel layers are lenticular, occur at top of unit, and are interbedded with medium-
grained, subangular to subrounded quartz sand, commonly in a red (2.5YR 5/8) 
sandy clay to clayey sand matrix that is 3–5 percent of rock by volume.  Firm, 
moderately well cemented by clay minerals, hydrous iron oxide(?), manganese 
oxide(?), and silica.  Locally present are abundant vertical, roughly cylindrical (2–20 
cm in diameter), iron oxide-cemented sand structures (root casts?, burrows?).  
Locally, gravel is overlain by brownish-yellow (10YR 6/8) silt that contains root casts 
1–2 mm in diameter and tens of centimeters long.  Vesicles 0.5 mm in diameter are 
common.  The lower exposed beds commonly are red (2.5YR 4/6), medium to 
coarse sand.  In a 300-m-long, 4- to 7-m-deep, north-south excavation (south edge 
of quadrangle, about 250 m west of the former “Bella Vista Country Club,” lat 
35°00'10" N., long 89°55'40" W.), loess-buried, crossbedded pebble gravel is the 
uppermost bed and is present in two or three gently sloping, planar beds.  Beds dip 
1°–2° southward, stepping downward to the south, and have 1–2 m vertical 
separation, suggestive of terraces or alluvial surfaces.

Age of unit is uncertain, as is age relation between loess-buried gravel deposits 
in eastern part of quadrangle and those in Southwest Memphis quadrangle 
immediately west.  Previous workers referred to similar topographically high, 
widespread graveliferous deposits in the Mississippi Valley region as Orange Sand, 
Lagrange, Upland Gravel, Lafayette Gravel, Citronelle, or the Upland Complex 
(Autin and others, 1991, p. 554).  Unit QTg is exposed in gravel pits.  Based on 
interpretations of drill-hole data (see Methods, also cross sections), thickness of unit 
varies from 5 to 21 m and overlies Tertiary bedrock.  In exposures, uppermost 
gravelly beds are 1–1.5 m thick and are underlain by sand beds of unknown 
thickness; base covered

Bedrock (Tertiary)—Shown in cross sections only.  Interbedded sand, silt, clay, and 
lignite; loosely consolidated.  Probably Eocene Jackson Formation or upper part of 
Eocene Claiborne Group (Kingsbury and Parks, 1993)

Contact—Solid where relatively certain; dashed where less certain

Mastodon site—Lat 35°4' N., long 89°54' W. (Delcourt and others, 1980)

Drill-hole locality and identification number

INTRODUCTION

The purpose of the map is to help assess the susceptibility of surficial deposits and materials to 
liquefaction and landsliding during strong ground shaking (earthquakes).  These susceptibilities are 
related to the characteristics of the deposits and materials and their topographic position (Youd, 
1991; Hwang and others, 2000), which are described and depicted here.  Other possible uses of the 
map include land-use planning, zoning, education, and locating aggregate resources.  The Southeast 
Memphis quadrangle is one of several quadrangles that were mapped recently for these purposes (fig. 
1).

The City of Memphis is near the New Madrid Seismic Zone (NMSZ) and is within the upper 
Mississippi embayment, which is seismically active (Schweig and Van Arsdale, 1996) (fig. 2).  
Proximity to the NMSZ raises concerns that if earthquakes as strong as the 1811–1812 NMSZ 
earthquakes were to occur, life and infrastructure in Memphis would be at risk (Hamilton and 
Johnston, 1990).  Compelling evidence of seismic risk includes the following:  (1) probable 
earthquake-induced liquefaction features (sand dikes) exist inside the city limits of Memphis 
(Broughton and others, 2001), (2) severe damage in the area of present-day Memphis caused by an 
1843 earthquake in the NMSZ, near Marked Tree, Ark. (Stover and Coffman, 1993), and (3) the 
characteristically slow attenuation of seismic energy in the midcontinental region heightens the risk of 
damage (Johnston and Kanter, 1990; Tuttle and Schweig, 1996).

The Southeast Memphis quadrangle is located on a loess-mantled upland of Holocene and late 
Pleistocene age.  The loess (Ql), probably mostly the Peoria Loess (Leverett, 1898), covers alluvial 
sand and gravel of late Pliocene(?) to early Pleistocene age (QTg) that, in turn, overlies the 
uppermost, soft sandstone of the Clairborne Group of middle Eocene age (Tb).  The Peoria Loess 
was widely deposited during the late Wisconsinan glaciation and during an aggradational phase of the 
Mississippi River, 25,000–14,000 years B.P. (Knox, 1996, p. 265), when winds deflated silty glacial 
outwash from the river valley.  Subsequently, tributaries to the Mississippi River have eroded a 
dendritic network of drainageways in the Peoria Loess that covers the upland, and have deposited it 
as silty alluvium (Qa) and bog deposits (Qb) in their floodplains.

The main inaccuracies of the map are our generalized depiction of artificial fill (af) and manmade 
drainage, and our interpretations of stratigraphy using drill-hole data.  These subjects are discussed in 
the “Methods” section.

METHODS

Mapping was based on field observations, analysis of color aerial photographs (scale 1:24,000, 
flown in 1997), topography, and drill-hole data.  Grain sizes were estimated using a comparative 
chart that uses nomenclature of the modified Wentworth grade scale (American Geological Institute, 
1982).  Colors of materials were determined by comparison to Munsell Soil Color Charts (Munsell 
Color, 1973).  Geologic ages of the surficial geologic deposits are based on relative and absolute 
dating techniques and the findings of previous workers (Hilgard, 1892; McKay, 1979; Delcourt and 
others, 1980; Brister and others, 1981; Saucier, 1987; Autin and others, 1991).  Relative dating 
assumes that older deposits are higher above modern stream level and that the soils on them are 
more fully developed than those on the lower, younger deposits.  An absolute age is available from 
radiocarbon-dated fossil material in local stream alluvium (see Qa).

Parts of the quadrangle (in 2001) have been altered by construction.  In these parts, the shape of 
the land surface differs from that depicted on the topographic base map (1997) and aerial 
photographs.  The artificial fill (af), whose thickness is estimated in cross section, was mapped as a 
separate unit because it, like the natural geologic deposits, is subject to seismic shaking.  We 
estimated that emplacement of unit af typically requires that the upper 1–3 m of surficial geologic 
material be removed, replaced or placed nearby, leveled, and compacted.  We learned what goes into 
fill by watching it being emplaced at a warehouse foundation construction site (at the intersection of 
Getwell Road and Holmes Road, south-central edge of quadrangle) and at a highway access ramp 
construction site.  At the warehouse site, a loess-covered hill (Ql) was leveled, and the backfilled loess 
was compacted using motorized sheep-foot compactors.  We assume that artificial fill throughout the 
quadrangle, except gravelly railroad ballast, is composed of similarly compacted, silty material.

We constructed geologic cross sections to show the subsurface thickness of the units of interest.  
Depths to the boundaries between units were obtained from drill-hole data in the Shelby County 
Subsurface Database of the Ground Water Institute (GWI), University of Memphis 
(http://gwidc.memphis.edu/website/introduction).  The depths were determined by hydrologists and 
geologists who interpreted drillers’ logs and borehole electrical logs (Ank Webbers, formerly USGS, 
oral commun., 2000).

The locations of drill holes plotted on the map and cross sections in the quadrangle are subject to 
an unmeasured degree of error.  Locations of some holes in the GWI database were determined in 
the field by previous workers using a global positioning system; others were located by previous 
workers using maps and addresses (Brian Waldron, University of Memphis, written commun., 2002).  
Most drill holes probably are plotted within a few tens of meters to a hundred meters of the actual drill 
site (Brian Waldron, written commun., 2002).

A problem was encountered in plotting drill holes in the cross sections.  Elevations of the tops of 
drill holes obtained from the GWI database (derived from the National Elevation Dataset, NED, Gesch 
and others, 2002) did not agree well with elevations of the land surface at the drill sites as determined 
by the topographic map.  To reduce these discrepancies, we assigned elevations from the topographic 
map to the tops of the drill holes.  This required a re-projection of drill-hole locations (from state 
plane coordinates in the GWI database) to a Transverse Mercator projection and re-plotting of the 
new drill-hole locations on the Southeast Memphis 7.5-minute topographic quadrangle.

Summarizing the cross-section methodology, accuracy of vertical placement of the stratigraphic 
units depends mainly on three steps:  (1) accurately locating drill holes; (2) correctly “picking” tops of 
units in the drill holes using electric logs; and (3) correctly plotting units on the cross sections.
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Figure 1.  Locations of quadrangles for which the geology has been mapped recently 
as part of the National Earthquake Hazards Reduction Program of the USGS.
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